John A. Keith

Contact Information	Department of Chemical and Petroleum Engineering (CHE) Swanson School of Engineering University of Pittsburgh 3700 O'Hara Street Pittsburgh, PA 15261 USA	Office: 804 Benedum Hall Telephone: (412) 624-7016 Fax: (412) 624-9639 E-mail: jakeith[at]pitt.edu URL: http://klic.pitt.edu
Research Interests	Computational chemistry for catalysis and sustainability - specifi studies for solar fuels, electrochemical reactions, anticorrosion cos	
Education	California Institute of Technology, Pasadena, CA USA	
	Ph.D., Chemistry, September 2007	
	Dissertation: "Computational Insight into Homogeneous OAdvisor: William A. Goddard, III	rganopalladium Catalysis"
	Wesleyan University, Middletown, CT USA	
	B.A., Chemistry with High Honors, May, 2001	
	• Advisor: George A. Petersson	
Academic Experience	 University of Pittsburgh (Pitt), Pittsburgh, Pennsylvania US Department of Chemical and Petroleum Engineering (CHE) R. K. Mellon Faculty Fellow in Energy Associate professor Assistant professor 	SA Sep. 2013 – present Sep. 2019 – present Sep. 2013 – Aug. 2019
	 Princeton University, Princeton, New Jersey USA Department of Mechanical and Aerospace Engineering Associate Research Scholar Advisor: Emily A. Carter Instructor 	Nov. 2010 – Jul. 2013 Feb. 2013 – May. 2013
	 APC509: Methods and Concepts in Electronic Structure T Universität Ulm, Ulm, GERMANY Institut für Elektrochemie Alexander von Humboldt Postdoctoral Fellow Advisor: Timo Jacob 	Oct. 2007 – Oct. 2010
Honors and Awards	 Luxembourg National Research Fund: INTER Mobility award R.K. Mellon Faculty Fellowship NSF-CAREER Award Journal of Materials Chemistry A - Emerging Investigator Iss Pittsburgh Business Times: Who's Who in Energy Alexander von Humboldt Postdoctoral Fellowship Phi Beta Kappa American Chemical Society: Connecticut Valley Regional Aw Bradley Prize for Outstanding Undergraduate Thesis in Chem American Chemical Society Analytical Chemistry Award 	$\begin{array}{c} 2013-\text{present}\\ 2017\\ 2017\\ 2017\\ 2014-2016\\ 2008-2010\\ 2001\\ 2001\\ 2001\\ \end{array}$

Media	 Pittsburgh WESA: Highlighted in Weekly Pittsburgh Tech Report (27 June 2017) http://bit.ly/2ubVaEj Pittsburgh WESA: Reseacher Finds Possible Way to Make CO₂ Into Energy (3 Feb. 2015) http://bit.ly/1WfC9aU Pittsburgh Business Times: Pitt researcher receives funding to study carbon dioxide recycling (24 Jul. 2015) http://bit.ly/1TTY48W Quoted in Science Magazine: There's too much carbon dioxide in the air. Why not turn it back into fuel? (10 Sep. 2015) http://bit.ly/1K1xrZQ 		
SERVICE	Pitt / Departmental Service		
	• Bridging program coordinator	Sep. 2019 – present	
	• Graduate student recruiting coordinator	Sep. 2013 – Aug. 2017	
	Pitt / Swanson School of Engineering (SSoE)		
	• SSoE Diversity Committee Representative for CHE	Sep. $2016 - present$	
	• SSoE Committee for updating graduate applications	June 2016	
	National Service		
	• Physical Chemistry (PHYS) Division Officer for ACS, energy subdivision (three-year term)	Jan. 2016 – Dec. 2018	
	• Symposium co-organizer 2017 Fall ACS meeting, PHYS division: "Spectroscopic and Computational Insights into Solid/Liquid In- terfaces for Energy Conversion" (with Dr. Katherine Jungjohann)	Aug. 2017	
	• Symposium co-organizer 2017 Spring ACS meeting, COMP di- vision: "State-of-the-Art Methods for Modeling Materials Chem- istry" (with Prof. Benjamin Janesko)	Apr. 2017	
	• Conference co-organizer and session coordinator, Midwest The- oretical Chemistry Conference, Pittsburgh, PA (with Profs. Ken Jordan, Daniel Lambrecht, Jeffry Madura)	Jun. 2016	
	• Co-chair for AIChE 2015 annual meeting, Catalysis and Reaction Engineering Division: "Computational Catalysis", Salt Lake City, UT	Nov. 2015	
	• Co-chair for AIChE 2015 annual meeting, Computational Molec- ular Science and Engineering Forum: "Recent Advances in Molec- ular Simulation Methods", Salt Lake City, UT.	Nov. 2015	
	• Website/publicity co-chair and session organizer 24th North American Catalysis Society Meeting, Pittsburgh, PA.	Jun. 2015	
	• Intel ISEF 2015 - Grand Award Judge	May 2015	

	sion: "The	ium co-organizer 2015 Spring ACS meeting, CATL divi- eoretical and Experimental Synergies at the Frontiers of e Energy Catalysis" (with Prof. Amanda Morris)	Mar. 2015
		r for AIChE 2014 annual meeting, Catalysis and Reaction ng Division: "Computational Catalysis V", Atlanta, GA.	Nov. 2014
	ular Scien	e for AIChE 2014 annual meeting, Computational Molec- ce and Engineering Forum: "Recent Advances in Molec- lation Methods 1 & 2", Atlanta, GA.	Nov. 2014
		for AIChE 2013 annual meeting, Catalysis and Reaction ng Division: "Applications of DFT+X in Catalysis II" isco, CA.	Nov. 2013
Scientific	AAAS:	Sci. Rep.	
Reviewing	ACS:	ACS Books; ACS Catal.; Chem. Rev.; Environ. Sci. Technol.; Ind. En Chem. Res.; Inorg. Chem.; J. Am. Chem. Soc.; J. Chem. Theo Comput.; J. Org. Chem.; J. Phys. Chem. C; J. Phys. Chem. Le Organometallics	ory
	AIP:	J. Chem. Phys.	
	APS:	Phys. Rev. Lett.	
	ECS:	J. Electrochem. Soc.	
	Elsevier:	Acta Mater.; Catal. Today; Chem. Eng. Sci.; Chem. Phys.; Coor Chem. Rev.; Electrochim. Acta; Electrochem. Commun; J. Catal.; Power Sources, Mater. Chem. Phys.; Surf. Sci.	
	IOP:	J. Phys. Condens. Matter	
	NPG:	Nature Commun.; Nature Mater.; Nature Chem.; Nature Energy	
	RSC:	Catal. Sci. Technol.; Dalton Trans.; Energy Environ. Sci.; J. Mater. Che A; Nanoscale; Phys. Chem. Chem. Phys.	m.
	Springer:	Electrocatal.; J. Solid State Electrochem.; Theor. Chem.Acc.	
	Wiley:	Angew. Chem. Int. Ed.; Chem. Eur. J.; Eur. J. Org. Chem.	
	Grant proposals:	Reviewer for NSF; DOE; AFOSR; American Chemical Society Petroleu Research Fund; Kentucky Science & Technology Corporation; NW (Netherlands Organisation for Scientific Research); DFG (German Nation Science Foundation)	VO
Teaching	University	of Pittsburgh	
	Reactive I	00 (5 credit) Process Engineering duate pillar course in chemical engineering kinetics	Summer 2019
	Reactive I	00 (5 credit) Process Engineering duate pillar course in chemical engineering kinetics	Spring 2019

• CHE 0400 (5 credit) <i>Reactive Process Engineering</i> Undergraduate pillar course in chemical engineering kinetics	Summer 2018
• CHE 2101 (3 credit) Fundamentals of Thermodynamics Graduate-level chemical engineering thermodynamics & statistical mechanics	Spring 2018
• CHE 0400 (5 credit) Reactive Process Engineering Undergraduate pillar course in chemical engineering kinetics	Summer 2017
• CHE 1017/2017 (3 credit) Chemical Energy & Nature of the Chemical Bond Elective course in applications of quantum mechanics in chemistry	Spring 2016
• CHE 2101 (3 credit) Fundamentals of Thermodynamics Graduate-level chemical engineering thermodynamics & statistical mechanics	Fall 2015
• CHE 1017/2017 (3 credit) Chemical Energy & Nature of the Chemical Bond Elective course in applications of quantum mechanics in chemistry	Spring 2015
• CHE 2101 (3 credit) Fundamentals of Thermodynamics Graduate-level chemical engineering thermodynamics	Fall 2014
• Center for Simulation and Modeling Workshop Three lectures in quantum chemistry	May 7 – 9, 2014
$Princeton \ University$ – overall teaching effectiveness scores given (5.	0 is highest score)
• APC509 (3 credit) Methods and Concepts in Electronic Structure Theory Graduate level course in applications of quantum mechanics in chemistry	Spring 2013
Total external funding to date: \$1,473,789	
• NSF (CHE-1856460) Collaborative Research: Regulating homogeneous and heteroge- neous mechanisms in six-electron water oxidation Role: PI, Amount awarded: \$222,789 , PI time: 0.5 month	Jan. 2020 – Dec. 2023
• Luxembourg National Research Fund INTER-Mobility: Enhancing Atomistic Modeling: Physically Ro- bust Atomistic Machine Learning Models for Predictive Insights into Solvated Chemical Reactions Amount awarded: \$89,000 , in support of 10-month visit	Aug. 2019 – Jun. 2020

Funding

• Naval Research Laboratory (N00173191G006) Quantum chemistry studies of cathodic reactions on Cr_2O_3 surfaces Role: PI, Amount awarded: \$49,994 , PI time: 2 months	Apr. 2019 – Sep. 2019
• Naval Research Laboratory (N00173181G002) First principles QM predictions of dopants that suppress corrosion on Ti-6Al-4V oxides	Nov. 2017 – May 2018
Role: PI, Amount awarded: \$49,850 , PI time: 2 months	
• NSF (CBET-1705592) SusChEM: Machine learning blueprints for greener chelants Role: PI (with co-PI Eric Beckman), Amount awarded: \$299,999 , PI time: 0.5 month	Aug. 2017 – Jul. 2020
• NSF (CBET-1653392) CAREER: SusChEM: Unlocking local solvation environments for energetically efficient hydrogenations with quantum chemistry Role: PI, Amount awarded: \$526,746 , PI time: 1.0 month	Feb. 2017 – Jan. 2022
 Naval Research Laboratory (N00173161G023) Quantifying the effect of solvation on anti-corrosion coatings Role: PI, Amount awarded: \$50,000, PI time: 0.5 month 	Aug. 2016 – Jan. 2017
 Naval Research Laboratory (N00173151G018) Preventing Corrosion by Controlling Cathodic Reaction Kinetics Role: PI, Amount awarded: \$75,000, PI time: 1 month 	Oct. 2015 – Apr. 2016
• ACS Petroleum Research Fund Unraveling Heterocycle-Promoted Hydride Transfer Mechanisms for Energetically Efficient Fuel and Petrochemical Production Role: PI, Amount awarded \$110,000 , PI time: 0.4 month	Jul. 2015 – Jun. 2017
Internal funding: \sim \$66,000	
• Mascaro Center for Sustainable Innovation (Pitt) Seed grant: Toward machine learning blueprints for greener chelants	Jul. 2017 – Jun. 2018
Role: PI, Amount awarded: \$50,000 , PI time: 0 months	
• Pitt Central Research Development Fund (CRDF) Towards a Robust and Efficient Computational Modeling Approach for Elucidating Fundamental Photocatalysis Role: PI, Amount awarded \$16,000 , PI time: 0 months	Jul. 2015 – Jun. 2017
Postdocs	
• Aude Marjolin Former program manager for Pittsburgh Quantum Institute	Jan. 2014 – Oct. 2014
• Victor Oyeyemi Currently data scientist for Bloomberg	Jul. 2014 – Jun. 2015

Ph. D. students

Students at Pitt

• Mitchell C. Groenenboom (Pitt CHE) R.K. Mellon Graduate Fellow (2013-2018), National Research Council-funded postdoc at NIST, and now data scientist for Brembo	Jan. 2014 – Apr. 2018
• Karthikeyan Saravanan (Pitt CHE) Pittsburgh Quantum Institute Graduate Fellow (2016) and cur- rently data scientist at Highmark in Pittsburgh	Jan. 2014 – Dec. 2018
• Yasemin Basdogan (Pitt CHE) currently postdoc at Caltech	Jan. 2016 – Jan. 2020
 Charles Griego (Pitt CHE) R.K. Mellon Graduate Fellow (2018-2019), NSF graduate research fellow (2019-2022) 	Jan. 2018 – present
• Alex Maldonado (Pitt CHE) NSF graduate research fellow honorable mention (2019)	Jan. 2018 – present
• Lingyan Zhao (Pitt CHE)	Jan. 2020 – present
• Barbaro Zulueta (Pitt CHE)	May 2020 – present
Thesis MS students	
• Yaqun Zhu (Pitt CHE)	Jan. 2014 – Jul. 2015
• Nguyen Vo (Pitt CHE, co-advised with Karl Johnson)	Jan. 2015 – Apr. 2017
Special project MS students	
• Junchao Mei (Pitt CHE)	Sep. 2017 – Dec. 2017
• Benjamin Carlson (Pitt CHE)	Jan. 2017 – Apr. 2017
Undergraduate students (working more than 6 months)	
• Eli Lipsman (Pitt CHE) 2020 SSoE summer undergraduate	Jun. 2020 – present
• Brian Gentry (Pitt MEMS) 2019 SSoE summer undergraduate	Jun. 2018 – present
• Sarah Newton (Pitt CHE) 2018 MCSI summer undergraduate	Jan. 2017 – Aug. 2017
• Ethan Henderson (Pitt CHE) 2017 MCSI summer undergraduate	Jan. 2017 – Apr. 2019

 Angela Leo (Pitt CHE) 2017 MCSI summer undergraduate 2018 SSoE summer undergraduate 	Jan. 2017 – Apr. 2019
• Charles Hansen (Pitt CHE)	Sep. 2016 – Apr. 2017
• Yinan Kang (Pitt CHE)	Sep. 2014 – Sep. 2015
• Jeffrey Carr (Pitt CHE)	Jan. 2014 – Apr. 2015
• Rohith Amruthur (Pitt CHE)	Jan. 2014 – Dec. 2014

$Visiting \ students$

Presentations

	er Fatouros (summer REU student from Clarkson University)	Jun. 2019 – Aug. 2019
• Wi ough	lliam Belfield (visiting student from University of Loughbor-	Feb. 2018 – Jun. 2018
	elin Celani (summer REU student from Washington and Jef- n University)	Jun. 2017 – Aug. 2017
• Jar	nes Dean (summer REU student)	Jun. 2015 – Jul. 2015
	nesh Sundaravadivelu Devarajan (undergraduate visitor) ently graduate student at Texas Technological University	Jun. 2015 – Jul. 2015
• Eri stude	c Gottlieb (visiting Carnegie Mellon University chemistry PhD ent)	Jan. 2014 – Jun. 2015
• Aly	vssa Shorak (high school student)	Jun. 2015 – Sep. 2015
• Gir	na Wagner (summer REU student from Trine University)	Jun. 2014 – Jul. 2014
T .,		
	l Presentations since arriving at Pitt, '*' denotes pending talk, due to COVID-19	\ddagger' denotes virtual seminar
		'‡' denotes virtual seminar May. 5, 2020
given	due to COVID-19 EPFL Lausanne, Switzerland	
given 46.‡	due to COVID-19 EPFL Lausanne, Switzerland Title: Local Solvation In Chemistry and Some Alchemy Christian-Albrechts-Universität zu Kiel Kiel, Germany	May. 5, 2020

42.‡	KU Leuven Leuven, Belgium Title: Local Solvation In Chemistry and Some Alchemy	Apr. 27, 2020
41.‡	University of Basel Basel, Switzerland Title: Local Solvation In Chemistry and Some Alchemy	Apr. 1, 2020
40.	University of Ulm (Germany) Ulm, Germany Title: Local Solvation In Chemistry: What's Important, and How to Model It Effectively	Feb. 20, 2020
39.	2019 Telluride Workshop on Computational Materials Chemistry Telluride, CO Title: Economical explorations of physical reaction mechanisms	Jul. 17, 2019
38.	Yale University New Haven, CT Title: Computational quantum chemistry modeling of local solvation	Jun. 27, 2019
37.	Wesleyan University Middletown, CT Title: Mostly computational quantum chemistry modeling of local sol- vation?and a little bit of alchemy	Jun. 26, 2019
36.	Center for Energy Seminar Series University of Pittsburgh, Pittsburgh, PA Title: How quantum chemistry can save humanity	Jan. 14, 2019
35.	Chemical Physics Seminar Caltech, Pasadena, CA Title: Computational alchemy and paramedic treatments for continuum solvation modeling	Oct. 5, 2018
34.	Seminar: Department of Chemistry Trinity University, San Antonio, TX Title: Computational elucidation of local solvation effects in chemistry	Sep. 6, 2018
33.	Workshop: "CECAM: Machine Learning at Interfaces" EPFL, Lausanne, Switzerland Title: Opportunities for modeling complex systems with machine learn- ing	Jun. 6, 2018
32.	CATL division session "Machine Learning for Catalysis Research" 255th ACS meeting, New Orleans, LA Title: Applications of machine learning for studying amorphous mate- rials	Mar. 19, 2018
31.	CATL division session "Unconventional Catalysis - Targeting Stable Molecules" 255th ACS meeting, New Orleans, LA Title: Computational searches for energetically efficient CO ₂ reduction reaction steps across chemical and materials space	Mar. 19, 2018
30.	CATL division session "Activation of light (C1-C4) hydrocarbons. The- ory and experiments" 255th ACS meeting, New Orleans, LA Title: Screening hydrocarbon activation pathways with computational alchemy	Mar. 22, 2018

29.	Seminar: Department of Chemistry University of Virginia, Charlottesville, VA Title: In silico searches for (in)efficient electrocatalysts through chemical and material compound space	Feb. 16, 2018
28.	Mesilla Workshop on Nanocatalysis Mesilla, NM Title: Computational searches for energetically (in)efficient electrocat- alysts	Feb. 5, 2018
27.	Seminar: Department of Chemical and Biomolecular Engineering University of Illinois, Urbana, IL Title: In silico searches for (in)efficient electrocatalysts through chemical and material compound space	Jan. 18, 2018
26.	Computational Chemistry/Computational Modeling Meeting U.S. Army Corps of Engineers, Vicksburg, MS Title: In silico searches for energetically (in)efficient electrocatalysts through chemical and material compound space presented by Mitchell C. Groenenboom	Sep. 12, 2017
25.	ENFL division session "Innovative Chemistry & Electrocatalysis for Low- Carbon Energy & Fuels: Discovery to Application" 254th ACS meeting, Washington, DC Title: Pourbaix diagrams to guide searches for CO ₂ reduction catalysts	Aug. 22, 2017
24.	Philadelphia Conference in Theoretical Chemistry (PCTC) University of Pennsylvania, Philadelphia, PA Title: In silico searches for energetically (in)efficient electrocatalysts through chemical and material compound space	Aug. 18, 2017
23.	Seminar: National Energy Technology Laboratory, Pittsburgh, PA Title: In silico searches for energetically (in)efficient catalysts through chemical and material compound space	Apr. 12, 2017
22.	Seminar: Department of Materials Science and Engineering Carnegie Mellon University, Pittsburgh, PA Title: In silico searches for energetically (in)efficient catalysts through chemical and material compound space	Feb. 3, 2017
21.	Seminar: Department of Chemistry and the Center for Photochemical Sciences Bowling Green State University, Bowling Green, OH Title: In silico searches for renewable energy catalysts through chemical and material compound space	Jan. 18, 2017
20.	Seminar: Department of Chemical and Biomolecular Engineering Drexel University, Philadelphia, PA Title: In silico searches for renewable energy catalysts through chemical and material compound space	Nov. 11, 2016
19.	Seminar: Theory Department Army Research Laboratory, Aberdeen, MD Title: In silico searches for renewable energy catalysts through chemical and material compound space	Oct. 11, 2016
18.	Pittsburgh-Cleveland Catalysis Society, Pittsburgh, PA Title: In silico searches for renewable energy catalysts through chemical and material compound space	Sep. 23, 2016

17.	CATL division session "Electrocatalysis for CO ₂ reduction" 252th ACS meeting, Philadelphia, PA Title: Tailoring materials for electrocatalytic reduction of CO ₂ presented by Karthikeyan Saravanan	Aug. 24, 2016
16.	Workshop: Exploring Chemical Space with Machine Learning and Quan- tum Mechanics CECAM workshop, ETH Zurich, Switzerland Title: How to search for alloy catalysts using computational alchemy	Jun. 1, 2016
15.	ENFL division session "Application of Computational Chemistry for Fuel and Energy Production" 251th ACS National Meeting, San Diego, CA Title: First-principles investigations of aqueous phase CO ₂ reduction by borohydrides	Mar. 16, 2016
14.	CATL division session "Condensed Phase Catalysis Symposium" 251th ACS National Meeting, San Diego, CA Title: Mapping the energetically efficient catalysis of renewables with Pourbaix diagrams	Mar. 15, 2016
13.	I^2 CNER International Workshop "CO ₂ capture and utilization division", Kyushu University, Fukuoka, Japan Title: Atomic scale design of molecules and materials for energetically efficient electrochemical CO ₂ reduction	Feb. 4, 2016
12.	I ² CNER Annual Symposium "Computational solutions to fundamental problems in carbon-neutral energy research" Kyushu University, Fukuoka, Japan Title: Current status of and outlook for experimental and computational synergies to study electrocatalytic energy conversion	Feb. 1, 2016
11.	2016 Electrochemistry Gordon Research Conference Ventura, California Title: Computational determination of molecular co-catalysts for ener- getically efficient electrochemical processes	Jan. 11, 2016
10.	COMP division session "Calculating pKas and Redox Potentials" 250th ACS National Meeting, Boston, MA Title: Redox Potential and pKa Descriptors for Exploring the Catalysis of Renewables	Aug. 18, 2015
9.	Seminar at LONI Institute/LA-SiGMA Louisiana State University, Baton Rouge, LA Title: Exploring CO ₂ conversion into commodity chemicals with first principles quantum chemistry	Apr. 1, 2015
8.	Session: "The Science of CO ₂ Capture in Energy Production" ACS Central Regional Meeting 2014, Pittsburgh, PA Title: Unraveling mechanistic aspects of heterocycle-promoted CO ₂ electroreduction with quantum chemistry	Oct. 31, 2014
7.	 Pitt Center for Simulation and Modeling symposium: "Advancing Research Through High Performance Computing" University of Pittsburgh, PA Title: Engineering CO₂ recycling with high-performance computing 	Oct. 15, 2014

6.	 ENFL division session "Applications of Theoretical Chemistry for Energy and Fuel Production" 248th ACS National Meeting, San Francisco, CA Title: First principles descriptors for identifying molecular co-catalysts that facilitate efficient electroreductions for renewable energy 	Aug. 12, 2014
5.	 PHYS division session "Renewable Energy Generation at the Interface between Theory and Experiment" 248th ACS National Meeting, San Francisco, CA Title: Unraveling mechanistic aspects of heterocycle-promoted CO₂ electroreduction with quantum chemistry 	Aug. 11, 2014
4.	Pittsburgh-Cleveland Catalysis Society, Pittsburgh, PA Title: Unraveling heterocycle-promoted CO_2 electroreduction with quantum chemistry presented by Aude Marjolin	Jun. 02, 2014
3.	ENFL division session "Innovations in Carbon Dioxide Capture, Storage, Conversion, and Utilization" 247th ACS National Meeting, Dallas, TX Title: Unraveling heterocycle-promoted CO ₂ electroreduction with quantum chemistry	Mar. 16, 2014
2.	Seminar at Joint Center for Artificial Photosynthesis (JCAP) Caltech, Pasadena, CA Title: Quantum mechanical insights into photoelectrochemical CO ₂ re- duction processes	Oct. 18, 2013
1.	 PHYS division symposium: "Physical Chemistry of Solar Energy Conversion" 246th ACS National Meeting, Indianapolis, IN Title: Quantum mechanical insights into photoelectrochemical CO₂ reduction processes 	Sep. 08, 2013

Contributed presentations since arriving at Pitt, ' \mathbf{S} ' - denotes student presentations

40. S	2017 AIChE Annual Meeting, Minneapolis, MN Title: Accelerated Catalyst Screening Using Computational Alchemy Oral presentation by Karthikeyan Saravanan	Nov. 2, 2017
39. S	2017 AIChE Annual Meeting, Minneapolis, MN Title: Elucidating and Correcting the Unreliability of Continuum Sol- vation Methods When Modeling Homogeneous Reaction Mechanisms Oral presentation by Yasemin Basdogan	Oct. 30, 2017
38. S	2017 AIChE Annual Meeting, Minneapolis, MN Title: The Mechanism of Isobutylene Polymerization: New Insight into Proton-Catalyzed Polymerizations Oral presentation by Minh Nguyen Vo	Oct. 30, 2017
37.	232nd ECS Meeting, National Harbor, MD Title: Galvanic Corrosion of AA7075-T6 Caused By Doped Titanium Oxides in a Controlled Atmospheric Environment Oral presentation by Dr. Steven Policastro	Oct 5, 2017

36. S	232nd ECS Meeting, National Harbor, MD Title: Understanding Electrochemical Reduction of CO ₂ Using Quan- tum Chemistry Modeling Oral presentation by Karthikeyan Saravanan	Oct 4, 2017
35. S	254th ACS meeting, Washington, DC Title: Deoptimizing oxygen reduction reaction catalysis with doped amorphous Ti oxides Oral presentation by Mitchell C. Groenenboom	Aug 23, 2017
34. S	254th ACS meeting, Washington, DC Title: Elucidating and correcting the unreliability of continuum solva- tion methods when modeling homogeneous reaction mechanisms Oral presentation by Yasemin Basdogan	Aug 22, 2017
33. S	25th North American Catalysis Society Meeting, Denver, CO Title: The mechanism of isobutylene polymerization: new insight into proton-catalyzed polymerizations from the growing string method Oral presentation by Minh Nguyen Vo	Jun 5, 2017
32. S	 Pittsburgh Cleveland Catalysis Society, Akron, OH Title: Accurate computational modeling of chemical reactions in polar solvents using cluster-continuum modeling Oral presentation by Yasemin Basdogan 	May 25, 2017
31.	253rd ACS meeting, San Francisco, CA Title: Deoptimizing the oxygen reduction reaction on doped amorphous TiO_2 coatings for corrosion inhibition Oral presentation	Apr. 6, 2017
30. S	16th Annual AIChE, San Francisco, CA Title: Alloy Catalyst Discovery Using Computational Alchemy Oral presentation by Karthikeyan Saravanan	Nov. 18, 2016
29. S	16th Annual AIChE, San Francisco, CA Title: First Principles Quantum Chemistry Calculations to Model CO_2 Electroreduction on SnO ₂ Particles Oral presentation by Karthikeyan Saravanan	Nov. 16, 2016
28. S	16th Annual AIChE, San Francisco, CA Title: Neural Network and Reaxff Comparison for Au Properties Oral presentation by Jacob Boes, CMU student	Nov. 15, 2016
27. S	16th Annual AIChE, San Francisco, CA Title: Comparing the Effect of Counter Ions, Solvent Molecules, and Electron Correlation on Homogeneous Reaction Models Oral presentation by Mitchell C. Groenenboom	Nov. 15, 2016
26. S	Electrochemical Energy Symposium, CMU, Pittsburgh, PA Title: Deoptimizing the oxygen reduction reaction on doped amorphous TiO ₂ surfaces Oral presentation by Mitchell C. Groenenboom	Oct. 21, 2016
25. S	252th ACS meeting, Philadelphia, PA Title: Tailoring materials for electrocatalytic reduction of CO_2 Oral presentation by Karthikeyan Saravanan	Aug. 24, 2016

24. S	252th ACS meeting, Philadelphia, PA Title: Deoptimizing the oxygen reduction reaction on doped amorphous TiO ₂ surfaces Oral presentation by Mitchell C. Groenenboom	Aug. 22, 2016
23. S	PQI2016, Pittsburgh, PA Title: Traversing the chemical space - Alloy catalysts discovery using Alchemy Oral presentation by Karthikeyan Saravanan	Apr. 20, 2016
22. S	PQI2016, Pittsburgh, PA Title: Explicitly unraveling the roles of counter ions and solvent molecules Poster presented by Mitchell C. Groenenboom	Apr. 20, 2016
21.	15th Annual AIChE, Salt Lake City, UT Title: Liquid Mixtures Freezing at Room Temperature: More Insights into Crystallization and Applications of Poly(trimethylene glycol)/Water Mixtures Oral presentation	Nov. 11, 2015
20.	15th Annual AIChE, Salt Lake City, UT Title: New Perspectives on Aqueous Phase Reaction Mechanisms with Ab Initio Molecular dynamics, Nudged-Elastic Band, and Wavefunction Theory-in-DFT Embedding Oral presentation	Nov. 9, 2015
19.	15th Annual AIChE, Salt Lake City, UT Title: Coincidences and Insights into Molecular Heterocycles That Cat- alyze CO ₂ Reduction with Low Overpotentials Oral presentation	Nov. 8, 2015
18. S	228th Electrochemical Society meeting, Phoenix, AZ Title: Exploring the non innocence of inorganic complex ligands in (photo)electrochemical CO_2 reduction Oral presentation by Karthikeyan Saravanan	Oct 11, 2015
17. S	Science2015 hosted by the Pittsburgh Quantum Institute, Pittsburgh, PA Title: Aqueous phase CO ₂ reduction with sodium borohydride: An ab initio molecular dynamics and nudged-elastic band mechanistic study Poster presentation by Mitchell C. Groenenboom	Oct. 8, 2015
16. S	Catalysis in Energy Group Poster Fair, Pittsburgh, PA Title: Aqueous phase CO ₂ reduction with sodium borohydride: An ab initio molecular dynamics and nudged-elastic band mechanistic study Poster presentation by Mitchell C. Groenenboom	Aug. 11, 2015
15. S	24th North American Catalysis Society Meeting, Pittsburgh, PA Title: Nitrogen Enriched Nanocarbons as a Metal-Free Water Reducing Catalysts Oral presentation by Eric Gottlieb	Jun. 19, 2015
14. S	24th North American Catalysis Society Meeting, Pittsburgh, PA Title: The Mechanism for C-H Borylation By Cu-Fe Heterobimetallic Catalysts (Poster) Poster presented by Yaqun Zhu	Jun. 17, 2015

13. S	24th North American Catalysis Society Meeting, Pittsburgh, PA Title: Pourbaix Diagrams of Ruthenium Chromophores Under CO_2 Re- duction Conditions Oral presentation by Karthikeyan Saravanan	Jun. 16, 2015
12. S	24th North American Catalysis Society Meeting, Pittsburgh, PA Title: Unraveling the Electrochemical Reactivities of Aromatic N- Heterocycles with Quantum Chemistry Oral presentation by Mitchell C. Groenenboom	Jun. 16, 2015
11.	249th ACS National Meeting, Denver, CO Title: First-principles quantum chemical investigations on the selectiv- ity of borohydride for carbon dioxide and bicarbonate reduction in protic conditions Oral presentation	Mar. 25, 2015
10. S	249th ACS National Meeting, Denver, CO Title: Aqueous phase CO ₂ reduction with sodium borohydride: An ab initio molecular dynamics and nudged-elastic band mechanistic study (Poster) Oral presentation by Mitchell C. Groenenboom	Mar. 24, 2015
9.	14th Annual AIChE, Atlanta, GA Title: Water-Induced Crystallization of Poly(trimethyleneglycol) Oral presentation by Prof. Robert Enick	Nov. 19, 2014
8.	14th Annual AIChE, Atlanta, GA Title: Thermochemical Descriptors for Unraveling Molecular Promoted CO ₂ Conversions Oral presentation	Nov. 18, 2014
7. S	14th Annual AIChE, Atlanta, GA Title: First Principles Quantum Chemical Modeling of Radium in Barite for Fracking Wastewater Remediation Poster presented by Gina Wagner	Nov. 17, 2014
6.	14th Annual AIChE, Atlanta, GA Title: Benchmarking Modern Range Separated DFT Functionals and Ab Initio Wavefunction Theory-in-DFT Embedding for Computational Catalysis Applications Oral presentation	Nov. 17, 2014
5. S	Catalysis in Energy Group meeting, Pittsburgh, PA Title: A combined AIMD/NEB mechanistic study of aqueous phase CO ₂ reduction with sodium borohydride Oral presentation by Mitchell C. Groenenboom	Nov. 5, 2014
4.	2014 ACS Central Regional Meeting, Pittsburgh, PA Title: Unraveling mechanistic aspects of heterocycle-promoted CO_2 electroreduction with quantum chemistry Oral presentation	Oct. 30, 2014
3. S	2014 ACS Central Regional Meeting, Pittsburgh, PA Title: Investigations of nitrogen doping density in graphene and hydro- gen adsorption by DFT Oral presentation by Eric Gottlieb	Oct. 30, 2014

2.	2014 ACS Central Regional Meeting, Pittsburgh, PA	Oct. 29, 2014
\mathbf{S}	Title: Preventing corrosion by controlling cathodic reaction kinetics	
	Poster presented by Victor B. Oyeyemi	
1.	2014 ACS Central Regional Meeting, Pittsburgh, PA	Oct. 29, 2014
\mathbf{S}	Title: Aqueous phase CO_2 reduction with sodium borohydride: An ab	
	initio molecular dynamics and nudged-elastic band mechanistic study.	
	Poster presented by Mitchell C. Groenenboom	

Peer reviewed journal publications (work at Pitt without prior mentors)

- [1] Li, P.; Henkelman, G.; Keith, J. A.; Johnson, J. K. Elucidation of Aqueous Solvent-Mediated Hydrogen-Transfer Reactions by ab initio Molecular Dynamics and Nudged Elastic-Band Studies of NaBH₄ Hydrolysis. J. Phys. Chem. C 2014, 118, 21385–21399, DOI: 10.1021/jp507872d.
- [2] Marjolin, A.; Keith, J. A. Thermodynamic Descriptors for Molecules That Catalyze Efficient CO₂ Electroreductions. ACS Catal. 2015, 150, 1123–1130, DOI: 10.1021/cs501406j.
- [3] Grice, K. A.; Groenenboom, M. C.; Manuel, J. D. A.; Sovereign, M. A.; Keith, J. A. Examining the Selectivity of Borohydride for Carbon Dioxide and Bicarbonate Reduction in Protic Conditions. *Fuel* 2015, 150, 139–145, DOI: 10.1016/j.fuel.2015.02.007.
- [4] Parmelee, S. R.; Mazzacano, T. J.; Zhu, Y.; Mankad, N. P.; Keith, J. A. A Heterobimetallic Mechanism for C-H Borylation Elucidated from Experimental and Computational Data. ACS Catal. 2015, 150, 3689–3699, DOI: 10.1021/acscatal.5b00275.
- [5] Boes, J. R.; Groenenboom, M. C.; Keith, J. A.; Kitchin, J. R. Neural network and ReaxFF comparison for Au properties. Int. J. Quantum Chem. 2016, 116, 979–987, DOI: 10.1002/qua.25115.
- [6] Saravanan, K.; Keith, J. A. Standard redox potentials, pK_as, and hydricities of inorganic complexes under electrochemical conditions and implications for CO₂ reduction. *Dalton Trans.* 2016, 45, 15336–15341, DOI: 10.1039/C6DT02371A.
- [7] Groenenboom, M. C.; Saravanan, K.; Zhu, Y.; Carr, J. M.; Marjolin, A.; Faura, G. G.; Yu, E. C.; Dominey, R. N.; Keith, J. A. Structural and Substituent Group Effects on Multielectron Standard Reduction Potentials of Aromatic N-Heterocycles. J. Phys. Chem. A 2016, 120, 6888–6894, DOI: 10.1021/acs.jpca.6b07291.
- [8] Groenenboom, M. C.; Keith, J. A. Explicitly Unraveling the Roles of Counterions, Solvent Molecules, and Electron Correlation in Solution Phase Reaction Pathways. J. Phys. Chem. B 2016, 120, 10797–10807, DOI: 10.1021/acs.jpcb.6b07606.
- [9] Saravanan, K.; Gottlieb, E.; Keith, J. A. Nitrogen-doped Nanocarbon Materials Under Electroreduction Operating Conditions and Implications for Electrocatalysis. *Carbon* 2017, 111, 859–866, DOI: 10.1016/j.carbon.2016.10.084.
- [10] Gray, C. M.; Saravanan, K.; Wang, G.; Keith, J. A. Quantifying solvation energies at solid/liquid interfaces using continuum solvation methods. *Mol. Sim.* 2017, 43, 420–427, DOI: 10.1080/08927022.2016.1273525.
- [11] Saravanan, K.; Basdogan, Y.; Dean, J. R.; Keith, J. A. Computational investigation of CO₂ electroreduction on tin oxide and predictions of Ti, V, Nb and Zr dopants for improved catalysis. J. Mater. Chem. A 2017, 5, 11756–11763, DOI: 10.1039/C7TA00405B.
- [12] Groenenboom, M. C.; Anderson, R. M.; Horton, D. J.; Basdogan, Y.; Roeper, D. F.; Policastro, S. A.; Keith, J. A. Doped Amorphous Ti Oxides to Deoptimize Oxygen Reduction Reaction Catalysis (ACS Editors' Choice). J. Phys. Chem. C 2017, 121, 16825–16830, DOI: 10.1021/acs.jpcc.7b04210.
- [13] Groenenboom, M. C.; Keith, J. A. Quantum Chemical Analyses of BH₄⁻ and BH₃OH⁻ Hydride Transfers to CO₂ in Aqueous Solution with Potentials of Mean Force (Cover article). *ChemPhysChem* 2017, 18, 3148–3152, DOI: 10.1002/cphc.201700608.
- [14] Saravanan, K.; Kitchin, J. R.; von Lilienfeld, O. A.; Keith, J. A. Alchemical Predictions for Computational Catalysis: Potential and Limitations. J. Phys. Chem. Lett. 2017, 8, 5002–5007, DOI: 10.1021/acs.jpclett.7b01974.

- [15] Kanal, I. Y.; Keith, J. A.; Hutchison, G. R. A Sobering Assessment of Small-Molecule Force Field Methods for Low Energy Conformer Predictions (Cover article). Int. J. Quantum Chem. 2017, 118, e25512, DOI: 10.1002/qua.25512.
- [16] Vo, M. N.; Bryantsev, V. S.; Johnson, J. K.; Keith, J. A. Quantum Chemistry Benchmarking of Binding and Selectivity for Lanthanide Extractants. Int. J. Quantum Chem. 2017, 118, e25516, DOI: 10.1002/qua.25516.
- [17] Ilic, S.; Kadel, U. P.; Basdogan, Y.; Keith, J. A.; Glusac, K. Thermodynamic Hydricities of Biomimetic Organic Hydride Donors. J. Am. Chem. Soc. 2018, 140, 4569–4579, DOI: 10.1021/jacs.7b13526.
- [18] Banerjee, J.; Koronaios, P.; Morganstein, B.; Geib, S. J.; Enick, R. M.; Keith, J. A.; Beckman, E. J.; Velankar, S. Liquids that freeze when mixed: Co-crystallization and liquid-liquid equilibrium in polyoxacyclobutane-water mixtures. *Macromolecules* **2018**, *51*, 3176–3183, DOI: 10.1021/acs.macromol.8b00239.
- [19] Chido, M. T.; Koronaios, P.; Saravanan, K.; Adams, A. P.; Geib, S. J.; Zhu, Q.; Sunkara, H. B.; Velankar, S.; Enick, R. M.; Keith, J. A.; Star, A. Oligomer Hydrate Crystallization Improves Carbon Nanotube Memory. *Chem. Mater.* **2018**, *30*, 3813–3818, DOI: 10.1021/acs.chemmater.8b00964.
- [20] Basdogan, Y.; Keith, J. A. A Paramedic Treatment for Modeling Explicitly Solvated Chemical Reaction Mechanisms (Back cover article). Chem. Sci. 2018, 9, 5341–5346, DOI: 10.1039/C8SC01424H.
- [21] Vo, M. N.; Basdogan, Y.; Derksen, B. S.; Proust, N.; Cox, G. A.; Kowall, C.; Keith, J. A.; Johnson, J. K. Mechanism of Isobutylene Polymerization: Quantum Chemical Insight into AlCl₃/H₂O-Catalyzed Reactions. ACS Catal. 2018, 8, 8006–8013, DOI: 10.1021/acscatal.8b01494.
- [22] Griego, C. D.; Saravanan, K.; Keith, J. A. Benchmarking Computational Alchemy for Carbide, Nitride, and Oxide Catalysts (Front cover article). Adv. Theory Simul. 2019, 2, 1800142, DOI: 10.1002/adts.201800142.
- [23] Chatterjee, S.; Griego, C.; Hart, J. L.; Li, Y.; Taheri, M. L.; Keith, J.; Snyder, J. D. Free Standing Nanoporous Palladium Alloys as CO Poisoning Tolerant Electrocatalysts for the Electrochemical Reduction of CO₂ to Formate. ACS Catal. 2019, 9, 5290–5301, DOI: 10.1021/acscatal.9b00330.
- [24] Basdogan, Y.; Maldonado, A. M.; Keith, J. A. Advances and challenges in modeling solvated reaction mechanisms for renewable fuels and chemicals. WIREs: Comput. Mol. Sci. 2020, 10, e1446, DOI: 10.1002/wcms.1446.
- [25] Basdogan, Y.; Groenenboom, M. C.; Henderson, E.; De, S.; Rempe, S. B.; Keith, J. A. Machine Learning-Guided Approach for Studying Solvation Environments. J. Chem. Theory Comput. 2020, 16, 633–642, DOI: 10.1021/acs.jctc.9b00605.
- [26] Maldonado, A. M.; Basdogan, Y.; Berryman, J. T.; Rempe, S. B.; Keith, J. A. First-principles modeling of chemistry in mixed solvents: Where to go from here? J. Chem. Phys. 2020, 152, 130902, DOI: 10.1063/1.5143207.
- [27] Gentry, B. M.; Perry, R.; Laurie, T.; Beckman, E. J.; Enick, R. E.; Keith, J. A. Sugar Acetate-Based Low Molecular Weight Organogelators. *Chem. Lett. (accepted)* 2020, XXX, XXX, DOI: XXX.
- [28] Griego, C. D.; Kitchin, J. R.; Keith, J. A. Acceleration of Catalyst Discovery with Easy, Fast, and Reproducible Computational Alchemy. Int. J. Quantum Chem. (accepted) 2020, XXX, XXX, DOI: 10.1002/qua.26380.
- [29] Griego, C. D.; Zhao, L.; Saravanan, K.; Keith, J. A. Machine Learning Models Correct Systematic Errors in Alchemical Perturbation Density Functional Theory Applications to Catalysis. AICHE J. (in revision) 2020, XXX, XXX, DOI: XXX.

- [30] Groenenboom, M.; Anderson, R.; Wollmershauser, J.; Horton, D.; Policastro, S.; Keith, J. A. A Combined Neural Network Potential and Density Functional Theory Study of TiAl₂O₅ Surface Morphology and Oxygen Reduction Reaction Overpotentials. J. Phys. Chem. C. (accepted) 2020, XXX, XXX, DOI: XXX.
- [31] Keith, J. A. Computational Quantum Chemical Explorations of Chemical/Material Space for Efficient Electrocatalysts. ECS Interface Magazine (to be printed Summer 2020) 2020, XXX, XXX, DOI: XXX.
- [32] Bullock, R. M. et al. Using nature's blueprint to expand catalysis with Earth-abundant metals. *Science (accepted)* **2020**, *XXX*, XXX, DOI: XXX.
- [33] Johnson, C. A.; Choi, T. H.; Keith, J. A.; Garrett-Roe, S. Viscosity Dependence of the Ultrafast Vibrational Dynamics of Borohydride inNaOH Solutions: Crowding Effect on Dihydrogen Bonds. to be submitted to J. Phys. Chem. A 2020, XXX, XXX, DOI: XXX.
- [34] Gentry, B. M.; Belfield, W. S.; Choi, T. H.; Keith, J. A. Accurate computational schemes for modeling metal/macrocyclic binding. to be submitted to Phys. Chem. Chem. Phys. 2020, XXX, XXX, DOI: XXX.
- [35] Griego, C. D.; Maldonado, A. M.; Gentry, B. M.; Choi, T. H.; Lipsman, E.; Zhao, L.; Zulueta, B.; Keith, J. A. Insights and progress into quantum chemistry modeling of electrocatalysis. to be submitted to J. Phys. Chem. C, Aug 2020 2020, XXX, XXX, DOI: XXX.
- [36] Maldonado, A. M.; Hagiwara, S.; Otani, M.; Eckert, F.; Schwarz, K.; Sundararaman, R.; Keith, J. A. Assessment of solvation methodologies for modeling aqueous phase reaction mechanisms. to be submitted to J. Phys. Chem. C., Sep 2020 2020, XXX, XXX, DOI: XXX.
- [37] Vassilev-Gallindo, V.; Keith, J. A.; Müller, K.-R.; Tkatchenko, A. Making Predictive Insights into Chemical Systems with Machine Learning. to be submitted to Chem. Rev., Aug. 2020 2020, XXX, XXX, DOI: XXX.